Formation and Growth of Oligomers: A Monte Carlo Study of an Amyloid Tau Fragment

نویسندگان

  • Da-Wei Li
  • Sandipan Mohanty
  • Anders Irbäck
  • Shuanghong Huo
چکیده

Small oligomers formed early in the process of amyloid fibril formation may be the major toxic species in Alzheimer's disease. We investigate the early stages of amyloid aggregation for the tau fragment AcPHF6 (Ac-VQIVYK-NH2) using an implicit solvent all-atom model and extensive Monte Carlo simulations of 12, 24, and 36 chains. A variety of small metastable aggregates form and dissolve until an aggregate of a critical size and conformation arises. However, the stable oligomers, which are beta-sheet-rich and feature many hydrophobic contacts, are not always growth-ready. The simulations indicate instead that these supercritical oligomers spend a lengthy period in equilibrium in which considerable reorganization takes place accompanied by exchange of chains with the solution. Growth competence of the stable oligomers correlates with the alignment of the strands in the beta-sheets. The larger aggregates seen in our simulations are all composed of two twisted beta-sheets, packed against each other with hydrophobic side chains at the sheet-sheet interface. These beta-sandwiches show similarities with the proposed steric zipper structure for PHF6 fibrils but have a mixed parallel/antiparallel beta-strand organization as opposed to the parallel organization found in experiments on fibrils. Interestingly, we find that the fraction of parallel beta-sheet structure increases with aggregate size. We speculate that the reorganization of the beta-sheets into parallel ones is an important rate-limiting step in the formation of PHF6 fibrils.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Pre-amyloid oligomers budding:a metastatic mechanism of proteotoxicity

The pathological hallmark of misfolded protein diseases and aging is the accumulation of proteotoxic aggregates. However, the mechanisms of proteotoxicity and the dynamic changes in fiber formation and dissemination remain unclear, preventing a cure. Here we adopted a reductionist approach and used atomic force microscopy to define the temporal and spatial changes of amyloid aggregates, their m...

متن کامل

P135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease

Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms.  Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...

متن کامل

Connecting Macroscopic Observables and Microscopic Assembly Events in Amyloid Formation Using Coarse Grained Simulations

The pre-fibrillar stages of amyloid formation have been implicated in cellular toxicity, but have proved to be challenging to study directly in experiments and simulations. Rational strategies to suppress the formation of toxic amyloid oligomers require a better understanding of the mechanisms by which they are generated. We report Dynamical Monte Carlo simulations that allow us to study the ea...

متن کامل

A Monte Carlo Study of the Early Steps of Functional Amyloid Formation

In addition to their well-known roles in neurodegenerative diseases and amyloidoses, amyloid structures also assume important functional roles in the cell. Although functional amyloid shares many physiochemical properties with its pathogenic counterpart, it is evolutionarily optimized to avoid cytotoxicity. This makes it an interesting study case for aggregation phenomenon in general. One of th...

متن کامل

A minimal conformational switching-dependent model for amyloid self-assembly

Amyloid formation is associated with various pathophysiological conditions like Alzheimer's and Parkinson's diseases as well as many useful functions. The hallmark of amyloid assemblies is a conformational transition of the constituent proteins into a β - sheet rich filament. Accounting for this conformational transition in amyloidogenic proteins, we develop an analytically solvable model that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Computational Biology

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2008